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Wireless sensor networks (WSNs) comprising of tiny, power-constrained nodes are gaining
popularity due to their potential for use in a wide variety of environments like monitoring
of environmental attributes, intrusion detection, and various military and civilian applica-
tions. While the sensing objectives of these environments are unique and application-
dependent, a common performance criteria for wireless sensor networks is prolonging net-
work lifetime while satisfying coverage and connectivity in the deployment region. Secu-
rity is another important performance parameter in wireless sensor networks, where
adverse and remote environments pose various kinds of threats to reliable network oper-
ation. In this paper, we look at the problems of security and energy efficiency and different
formulations of these problems based on the approach of game theory. The potential appli-
cability of WSNs to intruder detection environments also lends itself to game-theoretic for-
mulation of these environments, where pursuit-evasion games provide a relevant
framework to model detection, tracking and surveillance applications.

The suitability of using game theory to study security and energy efficiency problems
and pursuit-evasion scenarios using WSNs stems from the nature of strategic interactions
between nodes. Approaches from game theory can be used to optimize node-level as well
as network-wide performance by exploiting the distributed decision-making capabilities of
WSNs. The use of game theory has proliferated, with a wide range of applications in wire-
less sensor networking. In the wake of this proliferation, we survey the use of game-theo-
retic approaches to formulate problems related to security and energy efficiency in
wireless sensor networks.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

hostile environment in certain application-specific deploy-
ment regions and device unreliability of individual nodes,

The resource-constrained nature of WSNs in terms of
their size, cost, weight and lifetime [1] is a primary area
of concern for most potential applications using WSNs. At
their best, the constraints of size, weight and cost of indi-
vidual nodes have propelled their use in a wide variety of
military and civilian applications. At their worst, constraint
of the power-limited nature of nodes which also constrains
their computational, communication and sensing capabili-
ties calls for research into optimizing tradeoffs between
reliability and prolonged network operation. Coupled with
the inherent unreliability of the wireless channel, possible
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WSNss are subject to unique challenges for efficient power
management to prolong network lifetime in addition to
fulfilling sensing objectives of the application.

Energy efficiency and achieving reliability of data col-
lection is a key issue in sensor networks. Energy efficiency
has been investigated widely and the various approaches
to achieve an energy efficient network include scheduling
sensor nodes to alternate between energy-conserving
modes of operation, efficient routing algorithms, cluster-
ing, incorporating intelligence and use of spatial localiza-
tion at every sensor node to reduce transmission of
redundant data. These approaches draw upon theories
from mathematics, game theory, physics and even obser-
vation of biological phenomena [2-4]. Another important
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problem is security in sensor networks. Since sensor nodes
are deployed in diverse geographical environments, they
are more prone to failure from hostile environmental con-
ditions in addition to being vulnerable to various kinds of
attacks on the network. The unreliability of the wireless
channel also poses security challenges in WSNs similar to
those encountered in other ad hoc networks. A key applica-
tion environment for WSNs is for surveillance, detection
and tracking. Pursuit-evasion games (PEGs) comprising of
a pursuer or group of pursuers searching for evaders have
been widely used to model surveillance and detection sce-
narios. While typical WSNs are made of power-limited
nodes that limit computation and communication abilities,
PEGs requires the use of mobile, multi-sensor and actua-
tor-equipped devices that are capable of implementing
complex search algorithms and are able to communicate
among themselves to detect and capture evaders. Another
approach that makes use of the advantages offered by low-
power nodes of typical WSNs is to use these networks to
enhance the visibility and communication capabilities of
pursuers, thereby increasing the efficiency of the search
process. In this paper, we survey the use of concepts of
game theory to solve the problems of energy efficiency,
security and pursuit-evasion games in sensor networks.
An overview of these approaches is shown in Fig. 1.

2. Game theory and its applications in sensor networks

Game theory is a theory of decision making under con-
ditions of uncertainty and interdependence. We now pro-
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vide a brief introduction of the basics of game theory
with the help of examples modeled on scenarios prevalent
in WSNs. A game has three components: a set of players, a
set of possible actions for each player and a set of strate-
gies. A player’s strategy is a complete plan of actions to
be taken when the game is actually played. Players can
act selfishly to maximize their gains and hence a distrib-
uted strategy for players can provide an optimized solution
to the game. In any game, utility represents the motivation
of players. A utility function, describing player’s prefer-
ences for a given player assigns a number for every possi-
ble outcome of the game with the property that a higher
number implies that the outcome is more preferred. The
higher the number of participating nodes, the higher will
be the utility. A Nash equilibrium is a set of actions of
the players such that, any other action chosen by a player
does not result in more favorable utility for the players.
Most of the game formulations surveyed in this paper are
non-cooperative games, where nodes act selfishly, to min-
imize their individual utility in a distributed decision-mak-
ing environment [5]. This is in contrast to cooperative
games where nodes agree on pre-mediated strategies to
maximize their payoffs.

In WSNs involving non-cooperative energy-efficiency
games, nodes can act selfishly to conserve their power by
refusing to participate as relays in multi-hop networks. In
doing so, a node conserves its power; however the nodes
involved in transmission and reception of the message
have already used a fraction of their power and decreased
their lifetime. The utility function for the nodes is the sav-
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Fig. 1. Overview of game-theoretic approaches in WSNs.
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ings in battery power achieved by not cooperating in pack-
et forwarding of other nodes. Another utility function de-
scribed in [6] is the mapping of number of sensor nodes
participating in a sensory computation to a number. Such
selfish nodes can be encouraged to participate in commu-
nication by offering incentives. Incentives for the case of
wireless sensor networks could be tokens, in the form of
reputation or monetary benefits.

The next category of games that we survey is in the area
of security in WSNs. The strategies employed in energy-
efficiency games differ from security-oriented games in
many aspects. For example, malicious nodes within the
network might launch an active attack on other nodes in
the WSN, where the objective of the malicious nodes is
to disrupt network operation without consideration for
their own lifetime. Another category of attacks are passive
attacks, where malicious nodes prevent broadcast mes-
sages and other service-availability related messages from
reaching other nodes in the network [7]. In [8], the authors
further classify these attacks into one of five categories:
data-integrity and confidentiality related, service availabil-
ity and bandwidth consumption, routing, identity and pri-
vacy related attacks. In this paper, we survey models of
service availability and bandwidth consumption, routing,
energy consumption and security with approaches drawn
from game theory. Since game theory offers ways to for-
mulate problems posed by selfish and/or malicious nodes,
it can serve as a favorable tool for analyses of WSNs,
wherein, optimizing energy consumption in various node
activities and enabling secure network operation can be
modeled as games with nodes as the players.

Game theory offers models to capture the interaction
between players, in this case, nodes, by modeling the play-
ers as components of social networks, where players can
act in ways that would maximize their own utility, which
does not always lead to favorable outcomes for the game.
While game theory still lets players choose the best avail-
able action, it provides a situation where other players’
utilities are also maximized. This work surveys recent con-
tribution to literature and presents some of the problems
of wireless sensor networks addressed with the help of
game-theoretic models.

3. Energy-efficiency oriented games in WSNs
3.1. Energy conservation

In this section, we present the problem of energy conser-
vation in wireless sensor networks. Since sensors are
equipped with non-replenishable energy sources, they
should be programmed to achieve energy efficiency in their
sensing operations, routing and computational capabilities.
In [6], the authors propose node specialization in which
sensors adapt to different roles such as idle, sensing, rout-
ing and routing/sensing to maximize the utility of nodes
and the networks, where the utility is related to the number
of nodes participating in a computation. A larger number of
participating nodes indicates higher utility, with the con-
straint of limited battery power for every node.

In [6], the authors present experimental work for wire-
less sensor networks that are composed of sensor nodes

that each have a finite, non-replenishable source of energy,
a fixed transmission range R, a unique identifier and that
communication among nodes is commutative. All trans-
missions are assumed to be perfectly scheduled to avoid
interference and the transmission from a node reaches
the nodes in its neighborhood. The network is presented
as an undirected graph G = (V,E), where V is the set of all
nodes including the base stations. E is the set of edges in
the network defined as follows, where d(u,v) is the dis-
tance between nodes u and v, E = {(u,v)|ju,v € V,d(u,v) € R}.
The authors propose the node specialization, in which
nodes adapt to one of the following roles, idle, routing,
sensing and routing/sensing depending on the virtual
topology and power levels of the node. Further a node
may perform the following operations receiving, transmit-
ting, sensing and aggregation of collected data, each of
which is associated with costs ¢, csC;, €4 respectively.
The utility function maps the number of nodes participat-
ing in the sensory computation to a real value which mea-
sures the utility derived from output from a subset of
sensors of that size. Each sensor domain is associated with
a monotonically non-decreasing utility function that maps
the number of nodes participating in a sensory computa-
tion a real value which measures the utility derived from
output from a subset of sensors of that size. In the case
of an inelastic utility function, there are three regimes:
when very small numbers of nodes participate, the user
derives little utility. At a certain threshold, the utility in-
creases dramatically and then beyond a final inflection
point, there are diminishing marginal returns and utility
increases very slowly. The objective function for this model
seeks to ensure that nodes cannot consume more power
than they have available, and the data collected from all
nodes that get credit for participating in the sensing subset
at time t actually gets routed to the base station. The
authors propose an objective function of maximizing the
total aggregated utility of the network over time, i.e. to
maximize the sum over the lifetime of the network, of
the utility of computation at intermediate time steps. This
long-term strategy can be realized only through a combi-
nation of careful power management combined with dis-
tributed coordination on the part of the nodes in the
sensor network in choosing their roles over time. The
authors show that this model motivates nodes to discount
current gains in lieu of future rewards, thus optimizing
consumption of energy over a long time. As opposed to a
best-effort model in which the nodes use their resources
without consideration for their future use, the authors
have used this model in which economic restraints moti-
vate nodes to adapt to node specialization. The resulting
objective function results in better utilization of node re-
sources as compared to a best-effort service model.

Sensors can be deployed in environments where multi-
ple sensing requirements exist. An example of this would
be use of varied types of sensors to detect plant growth,
wildlife activity and forest fires. Co-location of these sen-
sors belonging to different authorities poses a situation
akin to social behavior, wherein the sensors of a particu-
lar authority could actively participate in the transmission
of packets of other sensors or selfishly refrain from doing
so.
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The situation when multiple sensor networks are co-lo-
cated and controlled by different authorities has been
studied in [9]. In this paper, the authors analyze the effect
of cooperation to achieve increase in the utility of individ-
ual network payoff and thereby optimize energy
consumption.

Co-existence of multiple sensor networks makes it pos-
sible for sensor nodes of a network to save transmission
power spent in forwarding packets of nodes belonging to
a different authority. The authors assume that all sensors
that lie in the transmission range of each other can com-
municate with each other, even though they belong to dif-
ferent authorities. They further assume that sensed data
occupies one message packet. Sensor nodes incur a trans-
mission cost that also includes the processing cost. The
reception and processing involve a fixed power R. The rout-
ing is assumed to be unselfish, and every node has two
routes, one within its own network (non-cooperative)
and the other in the common network of all authorities.
(cooperative routing). They label a set of networking ele-
ments belonging to a single authority i as the domain D;.
If a sensor node runs out of battery power, its domain is
called inactive and the routes are recalculated with its
route being excluded. They model this situation as a game
G ={P,S,U} where P is the set of players, i.e. the nodes in-
volved in transmission, S is the set of strategies and U is
the set of utility functions. A player i, of domain D; makes
a decision in a given time slot as to whether its sensors/
sinks should forward the packets of sensors belonging to
a different domain and whether to request other sensors/
sinks to forward its packets or to forward the packets only
within D;. Each such decision is called a move and a strat-
egy s; is a function that defines the move of the player in a
slot t + 1 given that it was successful in slot t. The payoff for
a node is the difference between the benefit received from
successful information-sending to the sink and the value of
the total (transmission and reception) cost for all sensors
belonging to a particular domain for both own and the
opponents’ packets. In this game, the authors define the
utility as the cumulative payoff for the nodes. In order to
maximize the utility, the players have to report measure-
ment successfully as many times as possible while mini-
mizing energy consumption. The authors simulate two
scenarios: separate sinks where each network has its
own sink (Fig. 2) and common sinks (Fig. 3), in which a sink

Fig. 2. Two co-located sensor networks with separate sinks. The circles
represent the domain D1 of one authority, while the squares represent
domain D2 of a different D2. The curved lines between nodes indicate
cooperative routing in the common domain of both authorities, while the
straight line connectors denote non-cooperative routing paths. The
network is shown is that of separate sinks in the deployment region.

is shared by all networks. For each player, they determined
the Nash equilibria that results in the highest utility.

They observed the players ended up playing defective
equilibria, i.e. do not ask other players to forward and drop
all other packets if asked for help or cooperative equilibria,
i.e. ask others to forward and forward all packets from oth-
ers if asked from others. They define a ratio 4, i.e. the ratio
of utility achieved by defection to that achieved by cooper-
ation. Simulation results have shown that authorities can
have significant benefit by providing service of their sinks
for other sensors’ networks. If sinks are common resources,
then cooperative forwarding is beneficial in sparse net-
works or in hostile conditions (Fig. 4). The path loss expo-
nent, used to model the hostile conditions of the
environment adversely affects the ratio é. As seen from
Fig. 5, with increasing signal attenuation (path loss), 6 de-
creases indicating that cooperation is the preferred strat-
egy to defection.

In [10], the authors use game-theoretic approaches to
perform distributed cross layer optimization for power
control at the physical layer and rate allocation at the
application layer. The power control game at the physical
layer addresses transmission interference in nearby sen-

Fig. 3. Common sink scenario for sensor nodes belonging to both
authorities.
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Fig. 4. Plot of network size on the ratio 6. For separate sinks, the incidence
of cooperative equilibria is higher than other types of equilibria, as seen
by the lower curve of the graph. The higher incidence of cooperative
equilibria is attributed to the formation of shorter routes, since sinks of
both domains are present. In the case of a common sink, the incidence of
defective equilibria is approximately equal to that of cooperative equi-
libria. With increase in network size, § decreases, resulting from increased
contribution of the reception power to the total power contribution.



R. Machado, S. Tekinay / Computer Networks 52 (2008) 3047-3061 3051

¢ L
3 4

Paln loss exponant { «)

Fig. 5. Plot of the ratio of the utilities achieved by defection to that of
cooperation, §, to the path loss exponent o which indicates the channel
variations in the environment. As the path loss (environment hostility)
increases, ¢ decreases, indicating that cooperation strategy is preferred to
defection.

sors. They introduce a tax mechanism in this game as an
incentive to the nodes (players) to avoid interference.
The higher power used by a node results in increased inter-
ference to adjacent nodes and hence a higher tax is levied
on this node. The tax rate is given by the rate at which
other nodes’ data rates are decreased with an increase in
transmission power. The rate allocation game at the appli-
cation layer is formulated as a source coding game. The
problem here is the estimation of the environment in the
deployment region in the presence of observation noise
at the sensors. To this end, the objective of the game is to
maximize link capacities corresponding to different power
levels, while minimizing the distortion at various source
rates that are supported by the nodes. The application
layer demand of source rates and the physical layer supply
of link capacities are linked by shadow variables, which
optimize the relationship between source rates and the
interference. A quantizer at the node quantizes the noisy
observation which is transmitted to the central processing
base station along with quantized information from other
sensors. Along with the need to minimize the mean-
squared error in the estimation process, the authors define
another parameter w, called the quantization effort. A
higher quantization effort w denotes higher source rates.
They introduce a pricing mechanism m into the source
coding game, where the tradeoff between source rate and
distortion is denoted by the source rate being a linear func-
tion of the quantization effort and the pricing mechanism
m. They implement the above game with a distributed
algorithm that iteratively accounts for the interaction be-
tween the source coding and power allocation games at
the two layers.

3.2. Routing
An important issue in wireless sensor networks is rout-

ing of sensed data. Approaches that deal with choice of effi-
cient routing algorithm in WSNs involve reducing the

number of hops, cluster formation, directed diffusion [2]
and randomized algorithms [11]. However, there could
be a rational interaction between the nodes, where the re-
lay nodes opt to conserve power by refusing to participate
in forwarding packets from other nodes, or from nodes
belonging to other networks. In this subsection, we con-
tinue the discussion of game theory in WSNs by surveying
recent work on routing among nodes belonging to single/
different authorities using techniques such as provision
of incentives to encourage cooperative routing.

Similar to the work in energy-efficiency featuring sen-
sors belonging to different domains, the authors in [12]
use game theory to analyze the outcome of a game, in
which the deployed sensors belong to different sponsors
(authorities) and can receive incentives for cooperative for-
warding. The authors use the terms ‘favors’ for services
provided by sensor nodes, typical examples of which are
routing, data storage and data aggregation. When sensors
request a service from another sensor belonging to a differ-
ent sponsor, the other sensor may choose to grant the favor
depending on its resources or decline the request for a fa-
vor. Alternately, it may selfishly decline to grant the favor
to conserve its resources. In such a game, where none of
the sponsors are obligated to provide favors to the nodes
of another sponsor, the Nash equilibria results in non-
cooperation of nodes belonging to different sponsors. To
avoid this situation, the authors propose the use of tokens
as incentives to encourage cooperation between sensors
belonging to different sponsors. Two sponsoring organiza-
tions i € {A,B} deploy sensors {s;1,S2,. . .,Sik}, 0N a rectangu-
lar grid consisting of 2K nodes. The use of tokens is
facilitated by each sponsor signing a contract promising
to pay the nodes of the other sponsor at the end of a time
period T. When a sensor node a belonging to one sponsor
requests a favor from a node b of another sponsor, it sends
a request for the favor along with the token. If the favor is
granted, the node b receives the token, otherwise node a
retains the token. The utility of a sensor node is a function
of the number of favors received and provided by a node s;
and the number of communication signals sent out by sj,
which is the total number of requests it made. The utility
for a sponsor is the sum of the utilities of all its sensors
plus the monetary transfer received by i at the end of T.
Using this setting where the sponsors can program their
nodes for cooperation and by establishing contracts at
the beginning of a time period for the number of tokens
that it can provide, the authors state and prove the exis-
tence of various Nash equilibria for varying conditions of
acceptance/rejection of contract. They show that token
equilibria, where sponsors jointly agree on the number of
tokens that they can trade for ‘favors’, exists when the
sponsors are able to write contracts. However, under the
condition that the sponsor cannot write the contract, the
Nash equilibrium is that a sensor cannot request a ‘favor’,
since the sponsor does not have tokens to trade in ex-
change for the ‘favors’. These conditions for Nash equilibria
under existence of contracts are summarized in Fig. 6.

A reliable query routing scheme has been proposed by
the authors in [13], where they suggest that the number
of sensors working simultaneously to collaborate on aggre-
gation of mined data should be chosen such that network-
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Fig. 6. Existence of Token and Nash equilibria under conditions of
contract establishment. If sponsors are unable to write a contract, the
Nash equilibria for the routing game involving tokens as incentives is that
no sensor requests a favor. However, under the condition that sponsors
can write a contract, the token equilibrium exists such that, each sensor
requests a favor only if it can provide a token for the favor requested, and
each sensor grants a favor if it is possible, whenever it receives a request.
This strategy induces cooperation with the introduction of incentive-
driven routing games.

wide objectives, namely, increasing information utilization
of the network and efficiency of communication resources
and energy consumption are achieved. They label this par-
adigm as sensor-centric and use a game-theoretic ap-
proach. In this approach, the sensors are modeled as
rational/intelligent agents cooperating to find optimal net-
work architectures that maximize their payoffs in a sensor
game, where sensor payoffs are defined as benefits of this
sensor’s action minus the individual costs.

The problem is modeled to be that of reliable energy-
constrained routing, in which a set of sensors are the play-
ers of the routing game. When a sink node sends a query to
the nodes in this set, it is checked for a match with the
attributes of the data sensed by the node. They abstract
this idea of information retrieval by a value v; that repre-
sents the closeness of the match. If v;=0, it implies that
the query does not match any attributes. This ensures that
high-value data are routed over reliable paths even at
higher costs. Information is routed to the sink node
through an optimally chosen set of sensors. They call this
game as the reliable query routing (RQR) game. Each sen-
sor node is modeled as relaying a received data packet to
only one neighbor and hence forms only one link between
any pair of source and destination nodes. A sensor node’s
strategy is modeled to be pure in the form of a binary vec-
tor, {li1,lin, . . ., lin}, where [; ; = 1/0 represents a sensor node
si's choice to send/not send a packet to sensor node s;. Since
every sensor that receives data has an incentive in reaching
the sink node, its payoff is a function of the path reliability

and the expected value of information at that node. This re-
sults in a data aggregation tree that is optimal, since if a
sensor node decides to choose a different neighbor on an-
other tree, it results in suboptimal behavior, i.e. reduced
payoffs to/from other nodes. Hence, this also forms the
Nash equilibrium for the reliable query routing game. Since
the network is unreliable and the sensors maximize their
own payoff subject to overall network objectives, they
use a path metric called the ‘path weakness’ to evaluate
various suboptimal paths. The path weakness determines
how much the node would have gained by deviating from
its current path to an optimal one. A negative deviation
suggests that a node s; is benefiting more from its given
strategy/profile path (perhaps at the expense of some other
sensor). A positive deviation indicates that the sensor node
could have performed better. They also present a team ver-
sion of this game called team RQR (TRQR), in which all
nodes on the path share the payoff of the worst node on
that path. Rather than selecting a neighbor to maximize
their individual payoffs in the original game, nodes in the
TRQR model compromise by maximizing their least possi-
ble payoff. As in RQR, each node’s strategy is to select at
most one neighbor. The TRQR routing algorithm was com-
pared to the following routing algorithms:

Cheapest neighbor path (CNP): The cheapest neighbor
path between two nodes i and j is defined as the path
obtained by each node choosing the next-hop node
via the cheapest link, where the cost is the expense
incurred by a node for link formation. The CNP usually
has longer path-lengths, and is less reliable than the
most reliable path (MRP) algorithm.

Overall least cost (cheapest) path (MCP): The overall least
cost path is the path with the least link costs, and can be
evaluated from Djikstra’s shortest path algorithm.
Most reliable path (MRP): The most reliable path can be
similarly obtained from Djikstra’s shortest path algo-
rithm, where node success probabilities (i.e. the proba-
bility of staying ‘awake’) are taken to be the same for all
nodes.

The simulation results of TRQR compared with CNP, MCP,
MRP and genetic algorithm based heuristic showed that
the TRQR performed quite well in cases of varying success
probabilities of a node and maximum edge (path) costs. A
key observation was that in the event of node success
probabilities p €(0,1] and the cost of a path between
nodes i and j ¢; = c for all i and j, the most reliable path is
the equilibrium path of the RQR game. For uniform p, the
equilibrium path also becomes the overall cheapest path
(MCP). In the scenario of rational nodes wanting to maxi-
mize their own payoffs with respect to the network objec-
tives, simulation results shown in Fig. 7 also found that
TRQR has low path weakness as it inherits the characteris-
tics of MRP in unreliable networks and that of the cost-
optimizing algorithm in highly reliable networks.

In contrast to the above approaches which use classical
game theory to study energy efficiency in WSNs, in [14],
the authors consider the problem of packet forwarding in
multi-class WSNs using evolutionary game theory. In clas-
sical game theory, players choose a particular strategy in
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Fig. 7. Plot of the path weakness as a function of the number of source-
destination pairs for node success probability p=0.998, and cost
¢=0.058. The TRQR algorithm performs better than the MRP, MCP, CNP
and the genetic algorithm (GA) by having the least path weakness for any
given number of source destination pairs. The path weakness determines
the quality of the routing path in terms of the weakness of individual
nodes on the routing path. This metric determines the payoff for nodes,
i.e. the amount a node gains by deviating from a current path and
participating in another path.

response to other players’ strategies and this strategy does
not change over time. However, in evolutionary game the-
ory, the frequency with which a player chooses a given
strategy varies over time in response to the strategies
adopted by other players. Thus, while in classical game
theory, players are assumed to possess decision-taking
abilities for obtaining payoff-maximizing strategies, evolu-
tionary game theory derives from the study of population
dynamics, where players (as in individuals of a species)
adopt strategies that maximize payoff by increasing the
frequency of strategies that increase the fitness of future
generations of the species. The use of evolutionary game
theory allows for players being able to choose from pre-
programmed set of actions and strategies and the use of
only local information. This does not require processing
at nodes to determine the strategy for a set of player ac-
tions, thus conserving power and avoiding the use of mem-
ory space for computing and storing action profiles and
strategies. They assume a multi-class (heterogeneous)
WSN, where any two non-neighboring class communicate
via multi-hop routing. Nodes can be selfish and act strate-
gically to optimize throughput over its active connections.
They consider inter-class relaying, when a class can coop-
erate and forward packets or defect. They assume noiseless
bidirectional links between nodes, and hence loss of a

packet is solely due to defection by a selfish class of nodes.
They model the game as that of non-cooperative repeated
N-player game between classes of nodes, where nodes par-
ticipate repeatedly in games with other nodes. In repeated
games, a node’s action in a given round is influenced by the
actions of other nodes and corresponding playoffs in previ-
ous rounds. Thus a repeated game offers ways to punish
nodes that do not cooperate by decreasing their payoffs
at the end of the game. This can be done by tarnished rep-
utation or decrease in incentives resulting in reduced pay-
offs at the end of the game. Cooperation is similarly
rewarded, by examining the payoffs after repeated rounds
of the game. Nodes with higher history of collaborative ef-
forts have higher reputation, accumulate incentives faster
and are included in reliable routes. Authorities of each
class decide whether or not to forward packets. The game
ends when only two classes remain active, where a class
is considered inactive on depletion of its first node. In order
to develop the payoff matrix for cooperation/defection,
they introduce incentive for cooperation. In transmitting
or forwarding a packet, classes spend battery energy g
and gain an incentive 7. If classes refuse to retransmit, they
gain ¢ and there is no cost to them. The nodes in all classes
are assumed to be pre-programmed with two strategies:
cooperate and defect. The benefit for non-cooperating
players is a value « multiplied by the number of cooperat-
ing nodes. They consider two scenarios: packet forwarding
between mobile classes and packet forwarding between
spatially dispersed stationary classes. They introduce a
strategy, the Patient Grim strategy described as follows:
‘Cooperate and continue to cooperate until the other player
defects n (n > 0) times, and then defect forever. The payoff
of this strategy is given as the weighted sum of payoffs
overall periods weighted by 6, where 0 < § < 1. They show
that for packet forwarding between stationary classes,
Nash equilibrium is achieved if each player plays the Pa-
tient Grim strategy and the discount factor § is approxi-
mately close to unity. For stationary classes, cooperation
stabilizes the payoff by forming clusters and reducing
exploitation by defection. This is in contrast to mobile clas-
ses, where defection has been shown to be the only strat-
egy for stable payoff based on the theory of evolutionary
dynamics. For packet forwarding in mobile classes, they as-
sume that the benefit of cooperation increases with the
number of cooperating players. It should be noted, how-
ever, that the strategy cooperation for payoff stabilization
in stationary classes is dependent on o. A higher value of
o results in cooperation being unstable even for stationary
classes. These results are summarized in Fig. 8.

3.3. Load balancing in wireless sensor networks from point of
view of bandwidth allocation

The distributed nature of sensor networks can lead to
high workload for sensor nodes in the network. With the
resource constraint of battery power and thereby network
lifetime, distributing the workload of query flooding, pro-
cessing query replies and control overhead across the net-
work helps in balancing energy consumption and
increasing network lifetime [15-17]. The authors in [15]
model the load balancing problem by using techniques
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Fig. 8. Payoff stabilization criteria in mobile and stationary classes of WSNs using evolutionary game theory.

from mechanism design and game theory to design a
decentralized sensor network. Unlike the above two ap-
proaches in which we strive to increase the utility of sensor
nodes and the network in general, where the utility func-
tion is known a priori, the authors design the utility func-
tions of individual nodes such that the network objectives
are met when the sensors maximize their individual utility
functions. The problem here is to organize data gathering
from large multi-hop sensor networks to distribute the
query processing and reply load. This is done by construct-
ing a tree rooted at the base station/ sink. Every node has a
level in the network which is the number of hops from the
sink node. A node must find and attach to a parent with
fewer children than the current one. The decisions taken
by a node at every level are independent of the decisions
taken by nodes at all other levels. In the load balancing
problem for sensor networks, the authors describe a dis-
tributed algorithm to design the utility functions of indi-
vidual nodes, such that when these utility functions are
optimized by the sensor nodes, the overall objective of
the network is met. They do so from a bandwidth alloca-
tion point of view and compare their results with that of
a centralized algorithm [18].

The problem they look into is that of the load balanced
data gathering tree, which is essentially finding an opti-
mally semi-matching in a bipartite graph. They describe
a distributed iterative algorithm for sensor networks for
load balanced data gathering. In multi-hop sensor net-
works, when a base station sends a query to the network,
it may do so by flooding the network. The individual nodes
then organize themselves into levels and select a neighbor-
ing node at the previous level to be their parent. The prob-
lem here for a sensor node is to find a parent that has fewer
children and attach to it. Since the decision to attaching to
a particular parent node is independently taken by sensors,
the overall data gathering tree will be load balanced. The
game is played on the edges of a bipartite graph, where
the graph G =(MuU N,E), where M is set of all parents, N is
the set of all children. An edge (i, j) belongs to E, if j belongs

to M and i belongs to N and vice versa. The algorithm is de-
signed as an iterative game being played by selfish sensors.
The players in the game are the child nodes, with the util-
ity being the bandwidth guarantee C provided by a parent
to the child, i.e. the parent is committed to provide a band-
width of at least C to child i for all iterations after k as long
as i is child of p. At every iteration, a parent gives equal
bandwidth guarantees to its children. They define a parent
to be saturated if the total bandwidth guaranteed by par-
ent p at iteration k is equal to 1. The algorithm followed
by the child node is as follows. At an iteration k, a child
tries to connect to an unsaturated parent that provides
the best possible bandwidth guarantees. If there are multi-
ple such parents, the child expresses a willingness to con-
nect to all of them. After the child has been accepted by
one parent, it notifies the other parents of its inability to
join them (Fig. 9). The algorithm for the parent node is as
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Fig. 9. The set of parents M ={1,2,3} and the set of children N = {4,5,6}
with the bandwidth guarantees indicated on top of each parent. At each
iteration, the child chooses a parent that offers the best bandwidth
guarantee. The solid lines indicate matched parent-children sets (M, N}
given by {1,4}, {2,5} and {3,6}.
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follows. The bandwidth guarantee provided by a parent is
initially of the form 1/deg(p), where the deg(p) is the de-
gree of a node in the bipartite graph. Until a parent is sat-
urated, it increases the bandwidth guarantee by 1/
deg(p) — 1, 1/deg(p) — 2 until it becomes 1. While it is
not saturated, it finds the upper bound on the number of
children it can take and provides bandwidth guarantees
depending on its level of saturation. However, if a child
leaves or a child joins, the bandwidth guarantee is not in-
creased. The algorithm terminates at the following itera-
tion at which the parents are saturated. They prove that
the total number of iterations required to terminate the
algorithm is O(Ny), where y is the degree of the parent
node n the graph. At termination, Nash equilibrium results,
this is the condition when all parents are saturated. The
simulation results performed for the algorithms showed
that the number of parents of degree x produced by their
distributed algorithm and that produced by the centralized
algorithm employing optimal semi-matching algorithms
described in [18] are same.

4. Security

The large number of nodes in WSNs coupled with the
unreliability if nodes and wireless channels along with
the fundamental constraints in memory, battery power
and computational capacity introduce significant security
issues in WSNs. While the set of security issues in WSNs
are diverse, we focus on two main security challenges: at-
tacks by malicious nodes in the WSN and attacks by an
outside intruder on the WSN. In this section, we look at
three different scenarios, detection of intrusion to the most
vulnerable node in a network, intrusion by injecting a
malicious packet on a link in the network and malicious
nodes in the network that prevent the broadcast message
from the base station from reaching the nodes in the
network.

In [19], the authors deal with the issue of detecting at-
tacks by an intruder on the most vulnerable node in a sen-
sor network. The authors propose a non-cooperative, zero-
sum game-theoretic model to analyze the situation where
an intruder attacks the sensor network. They propose an
Intrusion Detection System (IDS), whose task is to detect
the most vulnerable node in the network and protect it
from the intruder’s attack. These nodes are divided into
clusters and one node in the cluster is chosen as the clus-
terhead. The choice of clusterhead is done with the help
of a clustering mechanism called weight clustering ap-
proach (WCA) [20], where clusters are adaptively formed
depending on the mobility of nodes, cluster size, transmis-
sion power and battery energy of nodes to achieve connec-
tivity between nodes and load balancing across the
network with low latency. The game is formulated as fol-
lows. With respect to one cluster k, the attacker has three
strategies, attack cluster k (AS1), do not attack at all (AS2),
and attack a different cluster (AS3). At every time slot, IDS
is protecting a cluster. The strategy for IDS would be to de-
fend a cluster k (SS1), and to defend another cluster (S52).
The payoffs of these two players are expressed in the form
of 2 x 3 matrices A; and B;; which denote the payoffs of IDS

and the attacker respectively. They define U(t) to be the
utility of the sensor network’s ongoing sessions, AL to be
the average loss of losing cluster k, C; to be the average cost
of defending cluster k, and N, the number of nodes in clus-
ter k. To calculate the IDS payoff matrix, for e.g.
ayq = (AS1,551) which is when both attacker chooses to at-
tack the same cluster that IDS is defending. So, for IDS, the
payoff will be the original value of utility minus the cost of
defending cluster k. a,; represents (AS1,5S52) when the at-
tacker attacks a cluster different from the one that IDS is
defending. In this case, the payoff will be utility minus
the average of defending a cluster as well as deducting
the average cost of loss the other cluster. Similar argu-
ments are applied to find the values of other elements in
the IDS payoff matrix. To calculate the attacker payoff ma-
trix By, the authors define three parameters, the cost of
waiting and deciding to attack in the future (CW), the cost
of intrusion for the attacker (CI), average profit for each at-
tack (PI). by, and by, are the non-attack mode CW, b;; and
b,, are representing attacks to cluster k, and b3 and b,3
represent attacks to cluster other than k.

The authors prove that the equilibrium solution for this
game is the state (AS1,5SS1). They compare this game-theo-
retic model of defending a sensor network with two other
approaches, a Markov Decision Approach (MDP) to predict
the most vulnerable sensor node, and another scheme in
which they use an intuitive metric, traffic metric and pro-
tect the node with highest value of this metric. Simulation
results show that IDS performs almost twice better than
MDP.

The authors in [21] model a game between the intruder
and service provider of the network. The objective of the
intruder is to inject a malicious packet in the network at
some node a with node t as the target. The intrusion is suc-
cessful when the packet reaches the target and unsuccess-
ful when it does not. To protect the nodes from the attack,
the service provider is allowed to sample the packets flow-
ing through the links on the network. Since sampling the
packets introduces additional computational costs, there
is a bound on the sampling rate. This bound B, represents
the maximum number of packets that can be sampled
per second and the sampling effort is distributed arbitrarily
overall the links in the networks. If a link e has a traffic f,
and it is sampled at a rate s,, then the probability of detect-
ing a malicious packet is p. = f/s.. The objective of the in-
truder is to minimize the probability that the malicious
packet is detected by the service provider, while the objec-
tive of the service provider is to maximize the number of
times a malicious packet is detected. This is the classical
two-person, zero-sum game, where the payoffs of the in-
truder and service provider add up to zero, in other words,
the intruder’s win amounts to the service provider’s loss
and vice versa. The optimal solution for this game is the
minmax optimal solution, which is the Nash equilibrium
for a zero-sum game. The minimax solution for this game
is that along any path the intruder will choose, the packets
will be sampled once along the link. If the sampling bound
B is greater than the maximum flow from a to t, the mali-
cious packet will always be detected. If B is less than the
maximum flow, there is a non-null probability that the
packet will be detected.
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In [22], the authors consider the environment where
malicious sensor nodes prevent the broadcast message
from the base station from reaching other nodes in a net-
work. A simple method to avoid this is for every sensor
node to acknowledge the receipt of the broadcast message.
However, this results in a large number of acknowledge-
ments reaching the base station causing an implosion at
the base station. Hence the authors consider a framework
where a subset of the total number of nodes sends an
acknowledgement to the base station. The attacker should
have no means of knowing the identity of this subset of
nodes to secure the broadcast message. This method, called
secure implicit sampling (SIS) assumes the existence of a
base station that is computationally and energy-wise pow-
erful than the sensor nodes. The strategy of an optimal at-
tacker is to deprive nodes of the broadcast message from
the base station. In the absence of SIS, the payoff of the at-
tacker would be the number of legitimate nodes deprived
of the broadcast message. However, in the presence of
SIS, once the attacker is detected his payoff goes to zero.
In a particular round, the attacker’s payoff is the total num-
ber of nodes x that he deprived of the broadcast message.
However, nodes may be deprived of the broadcast message
due to probabilistic packet loss and channel conditions.
Also, the base station may fail to receive an acknowledge-
ment for the same reasons. The authors introduce a factor
called the discount factor y. When 7 less than 1, the attack-
er is always attaches less importance to a future reward.
When 7 is equal to zero, the attacker is concerned only
about maximizing his immediate reward and when it is
equal to one, he attaches equal importance to his immedi-
ate and future reward. The total reward of an attacker is a
function of the total number of nodes x that he succeeds in
denying the broadcast message. As the probability of sam-
pling a node increases, the probability of detecting the at-
tacker increases. However, increased sampling also
increases the transmissions in the network which may
cause a loss of the broadcast message. They analyze this
tradeoff with the help of a zero-sum game-theoretic mod-
el, with the equilibrium given by a minmax condition on
the reward. The reward function J now is a function of both
p and x. They define p; as the probability that the base sta-
tion receive an acknowledgement from the node that is
sampled. p,; = 131 p;

The authors use flooding as the broadcast algorithm and
study the performance of the network where sufficient
number of nodes compromised. As the number of attacked
nodes increases, the attacker’s impact on the network be-
comes detectable by SIS. The optimal value of p for which
the attacker’s payoff was minimized was found to be be-
tween 0.1 and 0.15. Simulation results performed show
that as the number of nodes sampled increases, there is
an increase in transmission resulting in a greater natural
loss probability of acknowledgements.

In [7], the authors study another scenario of detecting
passive DoS attacks by malicious nodes in the network.
However, unlike the game formulation in [22] where an at-
tacker turns nodes malicious and prevents them from let-
ting broadcast messages reach other nodes in the
network, in [7] the authors study a game formulation at
the routing layer between malicious nodes that do not for-

ward incoming packets and an intrusion detector residing
at the base station. Malicious nodes in this work are those
nodes that selfishly do not forward incoming packets. The
intrusion detector monitors WSN of N nodes and detects
attacks by malicious nodes by keeping track of collabora-
tion of nodes which accumulates into reputation ratings
for a node over time. They model this scenario as a re-
peated game, where the IDS uses the history of nodes’ col-
laboration to determine paths comprising of malicious
nodes. The game is played as a non-cooperative N-player
game between N nodes in the WSN and an IDS residing
at the BS. Each node can take one of two actions- accept
a packet and forward it to improve its reputation (normal)
or selfishly decide not to forward the packet (malicious).
The IDS can detect an intrusion by malicious nodes by tak-
ing one of two actions: ‘catching’ it while being malicious
or ‘miss’ it. These action profiles for the IDS and the nodes
give rise to the following four cases, each with different
payoff functions: A false positive occurs when a node is
‘normal’ but the IDS ‘catches’ it as malicious. A false nega-
tive occurs when a malicious node is not detected. The
most rewarding situation for the IDS is when the IDS
catches a malicious node. The case of least concern for net-
work security is when a normal node is ‘missed’ by the IDS.
The utility for the IDS is given by a weighted sum of the
product of the payoff function in a given case and the num-
ber of occurrences of that case over the case of the re-
peated game. This weighted utility function has a
corrective benefit, since by taking into account the number
of occurrences of a case, it accounts for past behavior of the
IDS and accordingly wither rewards it for detecting mali-
cious nodes accurately or punishes it for false positives
and false negatives. In order to ensure finiteness of the re-
peated game payoffs, the authors introduce ‘discounted’
payoffs, where future payoffs are multiplied by a discount
factor delta relative to earlier payoffs. The authors consider
the following retaliation strategy for the nodes and the IDs.
Initially, a node cooperated to forward messages, so IDS
does not catch any node. In later periods, if the node has al-
ways cooperated, the IDS does not ‘catch’ it. However, if
the IDS catches a nodes being malicious, the node acts
malicious for the rest of the game. The retaliation strategy
for the node in the initial stage of the game is similar. In la-
ter periods, a node does not act maliciously if the IDS has
missed it. However, if the IDS catches a node, it acts mali-
ciously for the rest of the game. The authors show that the
best response for the IDS is to cooperate and not deviate
from the above strategy. The Nash equilibrium of the game
results when the IDS and the nodes in the WSN play the
game cooperatively by following their respective strate-
gies. The proposed protocol for the repeated game shows
a correlation between network size and successful intru-
sion detection, where detection success increases with
higher percentage of malicious nodes. An increase in the
number of malicious nodes has also been shown to reduce
the throughput of the WSN.

In [23], the authors study the case of malicious packets
refusing to forward incoming packets. Here the authors
consider a dynamic WSN of mobile nodes and address
security with three key parameters, cooperation, reputa-
tion and quality of security. They consider a wireless sen-
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sor network, where any node can be malicious by refusing
to cooperate with other nodes by not forwarding incoming
packets. The WSN is made up of clusters of mobile nodes,
and communication between clusters is facilitated by clus-
terheads. They study the performance of the WSN in terms
of cluster formation and messages per node with the help
of a utility-based approach which considers network secu-
rity in the payoff function. The payoff between two nodes
as a function of the three parameters of cooperation, repu-
tation and quality of security is defined as follows: The
cooperation between nodes is described as a function of
the minimum signal strength for cooperation, distance be-
tween the nodes and the cost of packet forwarding. The
reputation is defined as the ratio of packets forwarded to
the total number of packets received and generated pack-
ets between two nodes. The quality of security for each
cluster is defined as the percentage of exposed traffic if
security is compromised. This is calculated as the differ-
ence between the total number of packets generated be-
tween two nodes and the total number of packets
dropped between them. The payoff utility function for this
game and the node strategy is given as a weighted function
of the cooperation, reputation and the quality of security
parameters. If there is sufficient reputation, cooperation
and known history of trusted collaboration between nodes,
node cooperates. Since the WSN is assumed to be dynamic,
node movement causes formation of new clusters and
clusterheads as nodes move out of communication range.
They show that the equilibrium strategy for the game for
any two nodes i and j in same or different clusters is for
the highest probability of cooperation. They compare the
utility-based approach or cluster formation with the dis-
tance-based approach in terms of the number of average
number of messages passed per node per unit time, aver-
age number of clusters and average number of messaged
required to delete cluster or nodes from a cluster. They
show the utility-based approach performs better than the
distance-based approach by requiring lesser number of
messages for cluster/node deletion, lesser number of clus-
ters and hence lesser number of messages passed per unit

Table 1
Summary of various security-related game-theoretic approaches

time. An overview of all the above security-related game-
theoretic approaches is given in Table 1.

5. Pursuit-evasion games

The final area of game theory research in WSNs that we
survey is in the field of detection, tracking and surveillance
applications for WSNs. While most of the literature in sen-
sor networks for surveillance applications studies the use of
power-constrained sensor nodes that also have constraints
on processing and computation ability, in this section, we
survey the use of sensor networks with computationally
intensive, mobile nodes that are not limited by power con-
straints. The nature of games played by such networks dif-
fers from the games surveyed so far in that, while we still
have a set of players (pursuers and evaders), their strategies
are solely oriented towards maximizing probability of
locating and detecting capture for pursuers and evading
capture for pursuers. This is in contrast to the strategies
of energy-efficiency games, where nodes adopt strategies
that optimize the tradeoff between energy expenditure
and social incentives such as reputation or monetary bene-
fits derived from cooperation. Likewise, in security-ori-
ented games, if security attacks are perpetrated by nodes
in the network wishing to conserve energy by denying
other nodes of broadcast messages, or not participating in
routing, the strategies used to achieve efficient network
operation range from introducing reputation-based incen-
tives to enlisting the help of intrusion detection systems
(IDS) to protect the most vulnerable node from attack by
external attackers. However, the strategies for PEGs involve
developing efficient algorithms to locate the evader with
the help of information obtained from sensor networks
using distributed control, multi-sensor coordination. Such
efficient control mechanisms can combine information
from various levels of heterogeneous sensors to build maps
that reflect the highest probability of evader presence in a
certain region of the environment [24].

The game formulations in PEGs follow one of the fol-
lowing three approaches: worst-case approach, where the

Type of attack

Defense strategy

Ideal strategy

Payoff function

External intruder: Attacks most
vulnerable node in the network

External intruder: Injects malicious
packet in the network

External attacker: Causes nodes to
turn malicious by causing them
to prevent broadcast messages
from reaching other nodes

Internal: Malicious nodes do not
forward incoming packets

Internal: Malicious nodes in
mobile WSNs do not forward
incoming packets

IDS protects clusters of nodes
from the intruder

Service provider tries to detect
malicious packets by sampling
network flows at various links
A certain subset of nodes,
unknown to attackers sends
acknowledgement to the base
station for the broadcast
messages

Introduce reputation ratings for
collaboration between nodes

Maintain good cooperation,
reputation and quality of
security ratings at each node

IDS protects the same cluster
which the intruder attacks
Sampling strategy should be
greater than the maximum flow of
packets

Detect attacked nodes so that
attacker payoff goes to zero

Catch nodes in the process of
being malicious, i.e. while
dropping packets

Nodes cooperate only if there has
been a good history of
cooperation, reputation and
quality of security, otherwise they
defect

Function of utility, cost of defending/

protecting a cluster

Function of the probability of detecting a

malicious packet

Attacker payoff is proportional to the

number of nodes deprived of the
broadcast messages

Function of a discount factor times the

previous payoff

Function of the distance between nodes,

number of packets forwarded and

received, quality of service of traffic as a
% of exposed traffic when security is

compromised
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pursuers search for the evader in unknown environments
[25]. To overcome the complexity of searching for evaders
in an unknown environment, another approach is to obtain
maps of the environment beforehand and use this informa-
tion to develop PEGs for evader capture [26]. The third ap-
proach is the probabilistic approach, where the pursuers
search for evaders by simultaneously building maps of
the environment and utilizing pursuit algorithms to detect
and capture evaders [24]. We now look at a probabilistic
formulation of a PEG between pursuers and evaders in an
obstacle-filled environment.

In [24], the authors model a probabilistic PEG between a
group of pursuers and evaders in a 2-dimensional environ-
ment. The environment consists of square cells and an un-
known number of obstacles. Pursuers comprise of two
groups of agents — unmanned aerial vehicles (UAVs) and
unmanned ground vehicle (UGVs), where UAVs can locate
and share information about evaders’ location, but not cap-
ture them. An evader is said to be captured when the dis-
tance between the pursuer and the evader is lesser than a
pre-specified capture distance. Evaders move indepen-
dently of each other and pursuers can locate each evader
uniquely. Both pursuers and evaders gather information
about the environment as a set of following three measure-
ments: pursuer, evader and obstacle locations. At each
time instant, pursuers estimate the locations of evaders
and obstacles from this information and recursively find
the conditional probability of the evader being in a given
cell at that instant and compute an evader map. The game
ends when all evaders are captured. The authors assume a
simple binary model to determine the presence of an eva-
der/obstacle, i.e. [0,1] to indicate false positives and false
negatives. Using the probability of calculating false posi-
tives and false negatives and also the information about
the pursuer and evader locations, the authors calculate an-
other map for the obstacles in the environment. To deter-
mine the position of the evader(s) at the next time
instant, pursuers assume a Markov model that calculates
the probability of the evader moving to one of the eight
cells adjacent to its current cell location. They define two
greedy policies for the pursuers: local-max and greedy-
max. In local-max, the pursuer searches and moves to that
location in the one-step reachable set that has the highest
probability of containing an evader. This probability can be
executed by each pursuer locally, and hence is a scalable
and computationally-efficient strategy. In global-max, the
pursuers search over the entire map to determine the loca-
tion closest to the evader. While this strategy is more com-
putationally intensive than local-max, it has been shown to
outperform local-max policy by requiring lesser capture
time for evader capture. The strategies outline so far as-
sumed the instance of randomly-moving evaders. The
authors then introduce the case of intelligent evaders that
build maps of the pursuer and obstacle locations and intel-
ligently evade the pursuer. Their simulation results show
that it takes longer to capture an intelligent evader than
a randomly-moving evader.

In [27], the authors introduce additional strategies for
improvement of PEGs. The performance of the local-max
and global-max strategies discussed above can be further
improved by avoiding overlap between the sensing regions

of pursuers. The authors thus define ‘local max with no
overlap’, where a pursuer that moves to a region that over-
laps with the sensing region of another pursuer is heavily
penalized. This reduction in incentives forces pursuers to
choose strategies to move to unsensed locations to detect
the evaders, thereby improving efficiency of the local-
max algorithm. In order to reduce overlap in the global-
max policy, the authors introduce a modified ‘global max
with no overlap’ policy where instead of the pursuer mov-
ing directly from its current position to the next position to
detect the evader, it can take one of three routes: move
along the principal direction, or move along one of two
45¢° lines to the principal direction. The pursuers then use
the ‘local max with no overlap’ policy along the chosen
route to move to call location closest to the evader. They
further improve the global max policy, by implementing
it over sub-regions of the map instead of the entire map.
The area of a sub-region is equal to the sensing region of
a pursuer. A pursuer is assigned to a given location for
the next time instant in a sub-region, such that the pur-
suer’s distance to the evader is the least. This process is
adopted for all pursuers in their respective sub-regions.
They then move to these computed locations using the
‘global max with no overlap’ policy. This policy ensures
that pursuers are not over-assigned to certain locations.
A summary of the player-motion algorithms is shown in
Fig. 10.

Simulation results show that the reduction in sensing-
overlap and avoiding over-assignment of pursuers resulted
in lower median capture time for the local-max and global-
max strategies with no overlap and the global sub-regional
policies. The features of these strategies for pursuers and
evaders are given in Tables 2 and 3.

We now present the application of a traditional sensor
network of power-constrained nodes that can be used to
aid in PEGs. In [28], the authors describe one such scenario
where, sensor networks have been shown to improve the
detection ability of pursuers. Since pursuers usually have
limited visibility over the surveillance region, the use of
sensor networks can improve visibility for pursuers by en-
abling search over the entire region. Sensor networks can
also improve communication between pursuers, since
their large scale deployment over the entire surveillance
region can function as relays to pursuers and can result
in faster dissemination of sensed data between pursuers.
The authors propose sample hardware and software archi-
tectures to address localization, synchronization and scala-
bility and distributed control between pursuers. They
present a hierarchical control structure to implement dis-
tributed control applications for PEGs with the help of sen-
sor networks. They extend the idea of hierarchical control
structures for PEGs using sensor networks to a specific
implementation of space monitoring and debris detection
[29]. They use a PEG framework with sensor networks to
detect and capture debris (evaders) with the help of space
vehicles (detectors), both of which are orbiting around the
earth. Sensor nodes deployed over the surveillance region
are used to provide location estimates of nearby objects
in their sensing region using signal strength measurements
and then communicate this information to supernodes
over the shortest paths. The measurement process is as fol-
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Fig. 10. Overview of motion algorithms for pursuers and evaders in pursuit-evasion games.

Table 2
Features of various pursuit-evasion algorithms for pursuers in PEGs

Algorithm Features Advantages/Disadvantages

Local-max e Search and move to that local in the one-step reachable set with highest Advantages: Uses local information,
probability of evader presence Computationally less intensive, scalable

Local-max with o Pursuers are penalized for moving to cells that overlap with sensing regions of  Advantages: No overlap

no overlap other pursuers
Global-max e Pursuers search over entire map and move toward cells with maximum Advantages: Lesser time for evader capture
distance-discounted probability of evader presence along the direct line joining
the pursuer’s current location to evader’s current location. (Principal direction)

Global-max e Pursuers can move towards target cell along one of three paths: principal Disadvantages: Assigns all pursuers to one specific
with no direction or one of two 45° lines to right and left of principal direction. The target area, underutilize network resources
overlap choice of the preferred path is made using local max with no overlap policy.

Global sub- o The grid is divided into sub-regions, and the sub-region with maximum reward  Advantages: Best policy in terms of lesser capture
regional value is selected. Further, the single cell within this sub-region with maximum time, utilization of network resources

reward is chosen. The pursuer closest to this cell is instructed to move toward
this cell according to global-max with no overlap policy. This cells is removed
from further iterations, where this step is iterated for all sub-regions and
pursuers

Table 3

Features of various pursuit-evasion algorithms for evaders in PEGs

Algorithm Features Advantages/Disadvantages

Random evader motion
Intelligent evader motion

Evaders move randomly across the grid
Perfect knowledge of pursuer and obstacle locations

Advantages: Lesser time to capture
Disadvantages: Longer time to capture

lows: A sensor detects the presence of an object from the
signal strength as z;. It also listens for measurements of z;
from nearby sensors. If an incoming z; is larger than all
incoming messages, then the position of the object is esti-
mated from the value of the largest z; and communicated
to the nearest supernode. The estimation accuracy in-
creases with the number of nodes participating in the sens-
ing operation. The authors incorporate communication
delay and transmission failure in the sensing model and
propose a multi-layer control architecture for this scenario.
With the help of a mathematical formulation for the vehi-
cle dynamics, efficient tracking algorithms and the hierar-

chical control architecture, they show that the inclusion of
sensor networks in the PEG framework can greatly benefit
in developing efficient pursuit strategies for pursuers in a
distributed surveillance environments.

6. Conclusion

This article discussed problems dealing with energy
efficiency, security and detection/tracking in WSNs with
the help of concepts from game theory. Modeled to imitate
social behavior, approaches from game theory are feasible
for wireless sensor nodes, in which nodes strive to achieve
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conservation of battery power by selfish behavior. We dis-
cussed energy efficiency in networks where nodes special-
ize to different roles for power saving, while satisfying the
objective function of maximizing the number of nodes in-
volved in a sensory computation. Thus, while every node
works on power saving as well as maximizing the network
utility which is directly proportional to the number of sen-
sors involved, the network achieves optimization of energy
over a long time. We have also discussed multiple sensor
networks, where nodes belonging to different authorities
behave selfishly and refuse to forward packets of sensors
from another network. This problem has been modeled
to involve two authorities with different action profiles,
one of which is cooperative equilibrium. Cooperative pack-
et forwarding has been found beneficial when the two
authorities have common or individual sinks per authority.
The existence of networks of multiple authorities has been
discussed in the context of routing, where incentives in the
form of tokens are given to a network for participating in
cooperative forwarding. Reliable query routing has been
discussed in which replies to a query from the sink are
classified according to their importance and the high-value
data are routed over reliable paths. We also present the
problem of load balancing from a bandwidth allocation
perspective in sensor networks, where the sensor nodes
are classified into levels. The levels are determined by
the number of hops they are away from the sink. The goal
is to find nodes on the previous level, parents that have
fewer children and attach to it. The utility here is the band-
width guarantee that the parent provides to the child. Var-
ious security-oriented formulations have been detailed,
involving attacks by malicious nodes and external attack-
ers where the objectives of the attack range from denial
of service, selfish routing and introducing malicious pack-
ets for specific nodes as targets. We also summarized re-
cent research on pursuit-evasion games in WSNs used to
model detection, tracking and surveillance applications.
These formulations have provided insight into the ways
of applying game theory to sensor networks. As the appli-
cations of wireless sensor networks increase, it will be use-
ful to apply models from theories that model the behavior
of sensor networks from a rational point of view. Increased
interaction between nodes requires the use of distributed
algorithms to achieve increase in network lifetime and reli-
able network operation. This paper presented an overview
of the applications of game theory to wireless sensor net-
works in recent literature and emphasizes the need for
modeling sensor networks with problem formulations
based on the nature of interaction between nodes in wire-
less sensor networks.
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